翻訳と辞書
Words near each other
・ Particle-in-cell
・ Particle-induced X-ray emission
・ Particle-laden flows
・ Particle-size distribution
・ ParticleIllusion
・ Particles of Truth
・ Particolored flying squirrel
・ Particoloured
・ Particracy
・ Particular
・ Particular Church
・ Particular judgment
・ Particular point topology
・ Particular social group
・ Particular values of Riemann zeta function
Particular values of the Gamma function
・ Particularism
・ Particularly Dangerous Situation
・ Particularly vulnerable tribal group
・ Particulate (disambiguation)
・ Particulate inheritance
・ Particulate matter sampler
・ Particulate pollution
・ Particulates
・ Partido
・ Partido (Camarines Sur)
・ Partido Abe Kapampangan
・ Partido Acción Ciudadana
・ Partido Acción Nacional
・ Partido alto


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Particular values of the Gamma function : ウィキペディア英語版
Particular values of the Gamma function
The Gamma function is an important special function in mathematics. Its particular values can be expressed in closed form for integer and half-integer arguments, but no simple expressions are known for the values at rational points in general. Other fractional arguments can be approximated through efficient infinite products, infinite series, and recurrence relations.
==Integers and half-integers==
For positive integer arguments, the Gamma function coincides with the factorial, that is,
:\Gamma(n) = (n-1)!\qquad n \in \mathbb_0,
and hence
:\begin
\Gamma(1) &= 1, \\
\Gamma(2) &= 1, \\
\Gamma(3) &= 2, \\
\Gamma(4) &= 6, \\
\Gamma(5) &= 24.
\end
For non-positive integers, the Gamma function is not defined.
For positive half-integers, the function values are given exactly by
:\Gamma \left (\tfrac \right) = \sqrt \pi \frac
\Gamma\left(\tfrac+n\right) &= \frac\, \sqrt = \frac \sqrt \\
\Gamma\left(\tfrac-n\right) &= \frac\, \sqrt = \frac \sqrt
\end
where ''n''!! denotes the double factorial. In particular,
: \sqrt\,
|\approx 0.8862269254527580137\,,
|
|-
|\Gamma(\tfrac52)\,
|= \frac \sqrt\,
|\approx 1.3293403881791370205\,,
|
|-
|\Gamma(\tfrac72)\,
|= \frac \sqrt\,
|\approx 3.3233509704478425512\,,
|
|}
and by means of the reflection formula,
: \sqrt\,
|\approx 2.3632718012073547031\,,
|
|-
|\Gamma(-\tfrac52)\,
|= -\frac \sqrt\,
|\approx -0.9453087204829418812\,,
|
|}

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Particular values of the Gamma function」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.